
A Rewriting-based Approach to Trace Analysis

Klaus Havelund
havelund@email.arc.nasa.gov

Kestrel Technology
NASA Ames Research Center

Grigore Roşu
grosu@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

November 8, 2002

Abstract

We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic
(LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces,
finite traces appear naturally when testing and/or monitoring real applications that only run for limited
time periods. The presented algorithm is implemented in the Maude executable specification language
and essentially consists of a set of equations establishing an executable semantics of LTL using a simple
formula transforming approach. The algorithm is further improved to build automata on-the-fly from
formulae, using memoization. The result is a very efficient and small Maude program that can be used to
monitor program executions. We furthermore present an alternative algorithm for synthesizing provably
minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze
execution traces without the need for a rewriting system, and can hence be used by observers written in
conventional programming languages. The presented work is part of an ambitious runtime verification
and monitoring project at NASA Ames, calledPATHEXPLORER, and demonstrates that rewriting can be
a tractable and attractive means for experimenting and implementing program monitoring logics.

1 Introduction

Future time Linear Temporal Logic (future time LTL, or LTL for short) was introduced by Pnueli in 1977
[26] for stating properties about reactive and concurrent systems. LTL provides temporal operators that
refer to the future/remaining part of an execution trace relative to a current point of reference. The standard
models of LTL are infinite execution traces, reflecting the behavior of such systems as ideally always being
ready to respond to requests. Methods, such as model checking, have been developed for proving programs
correct with respect to requirements specified as LTL formulae. Several systems are currently being devel-
oped that apply model checking to software systems written in Java, C and C++ [12, 31, 4, 19, 3, 25, 7, 30].
However, for very large systems, there is little hope that one can actually prove correctness, and one must
in those cases rely on debugging and testing. To further strengthen system reliability, one may therefore
want to monitor a program execution during operation and determine whether it conforms to its LTL spec-
ification. Any violation of the specification can then be used to guide the execution into a safe state, either
manually or automatically. We present a rewriting algorithm for efficientlyevaluatingLTL formulae on
finite execution tracesonline, that is, processing each event as it arrives, in contrast to storing all the events
and then analyzing them backwards, as in [28] (see also Subsection 3.3), which requires too much space to
be practical.

The important question is how to efficiently test LTL formulae of finite trace models, and the main
decision here is what data structure one should use to represent the formula such that it can be used to
efficiently analyze the trace as it is traversed. We will present such a data structure. We will present and
implement our logics and algorithms in Maude [1], a high-performance system supporting both membership
equational logic [23] and rewriting logic [22]. The current version of Maude can do up to 3 million rewritings
per second on 800MHz processors, and its compiled version is intended to support 15 million rewritings per
second1. The algorithm is expressed as a set of equations establishing an executable semantics of LTL using
a simple formula transforming approach. The result is a very efficient and small Maude program that can be
used to monitor program executions. The decision to use Maude has made it very easy to experiment with
logics and algorithms.

We furthermore present an alternative algorithm forgeneratinga minimal special observer finite state
machine (FSM), or an automaton, from an LTL formula. Observer FSMs can be used to analyze execution
traces without the need for a rewriting system, and can hence be used by observers written in traditional
programming languages. The FSM-generator is implemented in Maude in about 200 lines of code.

The idea of using temporal logic in program testing is not new, and has already been pursued in the
commercial Temporal Rover tool (TR) [5], and in the MaC tool [21]. Both tools have greatly inspired
our work. In [27, 24] various algorithms to generate testing automata from temporal logic formulae are
described. Our basic contribution in this paper is to show how a rewriting system, such as Maude, makes it
possible to experiment with monitoring logics very efficiently and elegantly, and furthermore can be used as
a practical program monitoring engine. This approach makes it possible to formalize ideas in a framework
close to standard mathematics. The formula transforming approach suggested is a new and efficient way of
testing LTL formulae.

In previous work we described a dynamic programming algorithm for checking LTL formulae on exe-
cution traces [28] (see also Subsection 3.3). This algorithm evaluates a formula bottom-up for each point
in the trace, going backwards from the final state, towards the initial state. Unfortunately, despite its linear
complexity this algorithm cannot be used online. In [17, 10] we dualize the dynamic programming tech-
nique and apply it to past time LTL, in which case the trace more naturally can be examined in a forward
direction, and show how future time and past time LTL formulae can be embedded as comments in code and
get expanded into Java code fragments to get executed whenever reached. [6] presents a Büchi automata
inspired algorithm adapted to finite trace LTL. The Maude rewriting implementation of LTL described in
this paper, besides its simplicity, elegance and efficiency, offers a greater flexibility in experimenting with
temporal logics.

The work in this paper originates in [16] and some of it was presented at the Automated Software
Engineering conference [15]. What was not presented in [15] is a significant improvement to the main
rewriting algorithm which increases its efficiency by almost an order of magnitude (see Subsection 4.3).
Furthermore, this paper presents an algorithm for generating minimal observer automata from LTL formulae
(Section 5). This work constitutes part of thePATHEXPLORERproject at NASA Ames, and in particular of
the JavaPATHEXPLORER (JPAX) tool [13, 14] for monitoring Java program executions.JPAX facilitates
automated instrumentation of Java byte code, usingJTREK [2], which then emits relevant events to an
observer during execution (see Figure 1). The observer can be running a Maude process as a special case,
hence Maude’s rewriting engine can be used to drive a temporal logic operational semantics with program
execution events. The observer may run on a different computer, in which case the events are transmitted
over a socket. The system is driven by a specification, stating what properties to be proved and what parts of
the code to be instrumented. When the observer receives the events it dispatches these to a set of observer

1Personal communication by José Meseguer.

2

rules, each rule performing a particular analysis that has been requested. In addition to checking temporal
logic requirements, rules have also been programmed to perform error pattern analysis of multi-threaded
programs, identifying deadlock and datarace potentials.

Java
 Program

Bytecode

Instrumented
Bytecode

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

Ev
en

t S
tre

am

Instrument

Compile

(JVM)
Execute

Instrumentation

MaudeD
is

pa
tc

he
r

Figure 1: Overview ofJPAX

Section 2 contains preliminaries, including an introduction to Maude, propositional logic and the stan-
dard definition of propositional LTL with its infinite trace models. Section 3 presents a finite trace semantics
for LTL, its implementation in Maude, as well as briefly a dynamic programming implementation that an-
alyzes the execution trace backwards. Although abstract and elegant, these implementations are either not
efficient or not practical; Section 4 presents an efficient and practical implementation using a formula trans-
formation approach, and an even more efficient implementation based on hashing. Section 5 presents an
algorithm for generating observer automata from LTL formulae. Such automata may be used in observers
written in traditional programming languages, and may in certain cases be more efficient than the rewriting
approach. Finally, Section 6 contains conclusions and a description of future work.

2 Preliminaries

This section briefly introduces Maude, a rewriting-based specification and verification system, then a rela-
tively standard procedure to reduce propositional formulae, and then reminds the propositional LTL with its
infinite trace models.

2.1 Maude and Logics for Program Monitoring

Maude [1] is a freely distributed high-performance system in the OBJ [9] algebraic specification family, sup-
porting both rewriting logic [22] and membership equational logic [23]. Because of its efficient rewriting
engine, able to execute 3 million rewriting steps per second on standard PCs, and because of its metalan-
guage features, Maude turns out to be an excellent tool to create executable environments for various logics,
models of computation, theorem provers, and even programming languages. We were delighted to notice
how easily we could implement and efficiently validate our algorithms for testing LTL formulae on finite
event traces in Maude, admittedly a tedious task in C++ or Java, and hence decided to use Maude at least
for the prototyping stage of our runtime check algorithms.

3

We very briefly and informally remind some of Maude’s features, referring the interested reader to the
manual [1] for more details. Maude supports modularization in the OBJ style. There are various kinds of
modules, but we are using only functional modules which follow the pattern “fmod <name> is <body>

endfm ”. The body of a functional module consists of a collection of declarations, of which we are using
importing, sorts, subsorts, operations, variables and equations, usually in this order.

We next introduce some modules that we think are general enough to be used within any logical en-
vironment for program monitoring that one would want to implement by rewriting. The next one simply
defines atomic propositions as an abstract data type having one sort,Atom and no operations or constraints:

fmod ATOM is sort Atom . endfm

The actual names of atomic propositions will be automatically generated in another module that extends
ATOM, as constants of sortAtom. These will be generated by the observer at the initialization of monitoring,
from the actual properties that one wants to monitor.

An important aspect of program monitoring is that of an (abstract) execution trace, which consists of
a finite list of events. We abstract a single event by a list of atoms, those that hold after the action that
generated the event took place. The values of the atomic propositions are updated by the observer according
to the actual state of the executing program and then sent to Maude as a term of sortEvent :

fmod TRACE is protecting ATOM .
sorts Event Event* Trace . subsorts Atom < Event < Event* Trace .
op nil : -> Event .
op __ : Atom Event -> Event [prec 23] .
op _* : Event -> Event* .
op _,_ : Event Trace -> Trace [prec 25] .

endfm

The statementprotecting ATOM imports the moduleATOM. The above is a compact way to usemix-
fix2 and order-sorted notation to define an abstract data type of traces: a trace is a comma separated list of
events, where an event is itself a list of atoms. Thesubsorts declaration declaresAtom to be a subsort of
Event , which in turn is a subsort ofEvent* as well as ofTrace . Since elements of a subsort can occur as
elements of a supersort without explicit lifting, we have as a consequence that a single event is also a trace,
consisting of this one event. Likewise, an atomic proposition can occur as an event, containing only this
atomic proposition. Note that there is no definition of an empty trace. Operations can have attributes, such
as the precedences above, which are written between square brackets. The attributeprec gives a precedence
to an operator3, thus eliminating the need for most parentheses. Notice the special sortEvent* which stay
for terminal events, i.e., events that occur at the end of traces. Any event can potentially occur at the end
of a trace. It is often the case that ending events are treated differently, like in the case of finite trace linear
temporal logic; for this reason, we have introduced the operation_* which marks an event as terminal.

Syntax and semantics are basic requirements to any logic, in particular to those logics needed for mon-
itoring. The following module introduces what we believe are the basic ingredients of monitoring logics.
We found the following very useful for our logics, but of course, the user is free to change it if he/she finds
it inconvenient:

fmod LOGICS-BASIC is protecting TRACE .
sort Formula . subsort Atom < Formula .
ops true false : -> Formula .
op [_] : Formula -> Bool [strat (1 0)] .
eq [true] = true . eq [false] = false .

2Underscores are places for arguments.
3The lower the precedence number, the tighter the binding.

4

vars A A’ : Atom . var T : Trace .
var E : Event . var E* : Event* .
op _{_} : Formula Event* -> Formula [prec 10] .
eq true{E*} = true . eq false{E*} = false .
eq A{nil} = false .
eq A{A’} = if A == A’ then true else false fi .
eq A{A’ E} = if A == A’ then true else A{E} fi .
eq A{E *} = A{E} .

op _|=_ : Trace Formula -> Bool [prec 30] .
eq T |= true = true .
eq T |= false = false .
eq E |= A = [A{E}] .
eq E,T |= A = E |= A .

endfm

The first block of declarations introduces the sortFormula which can be thought of as a generic sort for any
well-formed formula in any logic. There are two designated formulae, namelytrue andfalse , with the
obvious meaning, together with a “projection”, denoted[_] , of any formula into a boolean expression. The
only role of this operation is to check whether a logical formula is violated or not, each logic being allowed
to refine this operator according to its policy. Its attribute says that this operation should always be evaluated
eagerly; numbers in the strategy declaration stay for argument positions that are numbered from left to right,
0 staying for the operator itself. The sortBool is built-in to Maude and has two constantstrue andfalse

which are different from those of sortFormula , and a generic operatorif_then_else_fi . The second
block defines the operation_{_} which takes a formula and an event and yields another formula. The
intuition for this operation is that it “evaluates” the formula in the new state and produces a proof obligation
as another formula for the subsequent events, if needed. If the returned formula istrue or false then it
means that the formula was satisfied or violated, regardless of the rest of the execution trace; in this case, a
message can be returned by the observer. As we’ll soon see, each logic will further complete the definition
of this operator. Finally, the satisfaction relation is defined. That is, two equations deal with the formulae
true and false and should be obvious. The last two equations state that a trace, consisting either of a
single event or of several, satisfies an atomic proposition if evaluating that atomic proposition on the event
yields true.

2.2 Propositional Calculus

A rewriting decision procedure for propositional calculus due to Hsiang [20] is adapted and presented. It
provides the usual connectives_/_ (and),_++_ (exclusive or),_\/_ (or), !_ (negation),_->_ (implica-
tion), and_<->_ (equivalence). The procedure reduces tautology formulae to the constanttrue and all the
others to some canonical form modulo associativity and commutativity. An unusual aspect of this procedure
is that the canonical forms consist of exclusive or of conjunctions. Even if propositional calculus is very
basic to almost any logical environment, we decided to keep it as a separate logic instead of being part of
the logic infrastructure ofJPAX. One reason for this decision is that its semantics could be in conflict with
other logics, for example ones in which conjunctive normal forms are desired.

An OBJ3 code for this procedure appeared in [9]. Below we give its obvious translation to Maude
together with its finite trace semantics, noticing that Hsiang [20] showed that this rewriting system modulo
associativity and commutativity is Church-Rosser and terminates. The Maude team was probably also
inspired by this procedure, since the builtinBOOLmodule is very similar.

fmod PROP-CALC is extending LOGICS-BASIC .
*** Constructors ***

5

op _/_ : Formula Formula -> Formula [assoc comm prec 15] .
op _++_ : Formula Formula -> Formula [assoc comm prec 17] .
vars X Y Z : Formula .
eq true /\ X = X .
eq false /\ X = false .
eq X /\ X = X .
eq false ++ X = X .
eq X ++ X = false .
eq X /\ (Y ++ Z) = X /\ Y ++ X /\ Z .

*** Derived operators ***
op _\/_ : Formula Formula -> Formula [assoc prec 19] .
op !_ : Formula -> Formula [prec 13] .
op _->_ : Formula Formula -> Formula [prec 21] .
op _<->_ : Formula Formula -> Formula [prec 23] .
eq X \/ Y = X /\ Y ++ X ++ Y .
eq ! X = true ++ X .
eq X -> Y = true ++ X ++ X /\ Y .
eq X <-> Y = true ++ X ++ Y .

*** Finite trace semantics
var T : Trace . var E* : Event* .
eq T |= X /\ Y = T |= X and T |= Y .
eq T |= X ++ Y = T |= X xor T |= Y .
eq (X /\ Y){E*} = X{E*} /\ Y{E*} .
eq (X ++ Y){E*} = X{E*} ++ Y{E*} .
eq [X /\ Y] = [X] and [Y] .
eq [X ++ Y] = [X] xor [Y] .

endfm

Operators are again declared in mix-fix notation and have attributes between squared brackets, such as
assoc , commandprec <number> . Once the module above is loaded4 in Maude, reductions can be done
as follows:

red a -> b /\ c <-> (a -> b) /\ (a -> c) . ***> should be true
red a <-> ! b . ***> should be a ++ b

Notice that one should first declare the constantsa, b andc . The last six equations are related to the seman-
tics of propositional calculus. Since[_] is eagerly evaluated,[X] will first evaluateX using propositional
calculus reasoning and then will apply one of the last two equations if needed; these equations will not be
applied normally in practical reductions, they are useful only in the correctness proof in Theorem 1.

2.3 Linear Temporal Logic

Classical LTL provides in addition to the propositional logic operators the temporal operators[]_ (always),
<>_ (eventually),_U_ (until), ando_ (next). An LTL standard model is a functiont : N+ → 2P for
some set of atomic propositionsP, i.e., an infinite trace over the alphabet2P , which maps each time point
(a natural number) into the set of propositions that hold at that point. The operators have the following
interpretation on such an infinite trace. Assume formulaeX andY. The formula[]X holds if X holds in all
time points, while<>X holds if X holds in some future time point. The formulaX U Y(X until Y) holds if Y

holds in some future time point, and until thenX holds (so we consider strict until). Finally,o X holds for
a trace ifX holds in the suffix trace starting in the next (the second) time point. The propositional operators
have their obvious meaning. As an example illustrating the semantics, the formula[](X -> <>Y) is true
if for any time point ([]) it holds that ifX is true then eventually (<>) Y is true. Another similar property is
[](X -> o(Y U Z)) , which states that wheneverX holds then from the next stateY holds until eventually
Z holds. It’s standard to define a core LTL using only atomic propositions, the propositional operators!_

4Either by typing it or using the command “in <filename> ”.

6

(not) and_/_ (and), and the temporal operatorso_ and_U_, and then define all other propositional and
temporal operators as derived constructs. Standard equations are<>X = true U X and[]X = !<>!X .

3 Finite Trace Linear Temporal Logic

As already explained, our goal is to develop a framework for testing software systems using temporal logic.
Tests are performed on finite execution traces and we therefore need to formalize what it means for a finite
trace to satisfy an LTL formula. We first present a semantics of finite trace LTL using standard mathemat-
ical notation. Then we present a specification in Maude of a finite trace semantics. Whereas the former
semantics uses universal and existential quantification, the second Maude specification is defined using re-
cursive definitions that have a straightforward operational rewriting interpretation and which therefore can
be executed.

3.1 Finite Trace Semantics

As mentioned in Subsection 2.1, a trace is viewed as a sequence of program states, each state denoting the
set of propositions that hold at that state. We shall outline the finite trace LTL semantics using standard
mathematical notation rather than Maude notation. Assume two total functions on traces,head: Trace →
Event returning the head event of a trace andlength returning the length of a finite trace, and a partial
functiontail : Trace → Trace for taking the tail of a trace. That is,head(e, t) = head(e) = e, tail(e, t) =
t, andlength(e) = 1 and length(e, t) = 1 + length(t). Assume further for any tracet, thatti denotes the
suffix trace that starts at positioni, with positions starting at1. The satisfaction relation|= ⊆ Trace ×
Formula defines when a tracet satisfies a formulaf , written t |= f , and is defined inductively over the
structure of the formulae as follows, whereA is any atomic proposition andX andY are any formulae:

t |= A iff A ∈ head(t)
t |= true iff true,
t |= false iff false,
t |= X /\ Y iff t |= X andt |= Y,
t |= X ++ Y iff t |= X xor t |= Y,
t |= []X iff (∀ i ≤ length(t)) ti |= X
t |= <>X iff (∃ i ≤ length(t)) ti |= X
t |= X U Y iff (∃ i ≤ length(t)) (ti |= Y and(∀ j < i) tj |= X)
t |= o X iff (if tail(t) is defined thentail(t) |= X elset |= X)

Notice that finite trace LTL can behave quite differently from standard infinite trace LTL. For exam-
ple, there are formulae which are not valid in infinite trace LTL but valid in finite trace LTL, such as
<>([]A \/ []!A) , and there are formulae which are satisfiable in infinite trace LTL and not satisfiable in
finite trace LTL, such as the negation of the above. The formula above is satisfied by any finite trace because
the last event/state in the trace either containsA or it doesn’t.

3.2 Finite Trace Semantics in Maude

Now it can be relatively easily seen that the following Maude specification correctly “implements” the finite
trace semantics of LTL described above. The only important deviation from the rigorous mathematical
formulation described above is that the quantifiers over finite sets of indexes are expressed recursively.

7

fmod LTL is extending PROP-CALC .
*** syntax

op []_ : Formula -> Formula [prec 11] .
op <>_ : Formula -> Formula [prec 11].
op _U_ : Formula Formula -> Formula [prec 14] .
op o_ : Formula -> Formula [prec 11] .

*** semantics
vars X Y : Formula .
var E : Event . var T : Trace .
eq E |= [] X = E |= X .
eq E,T |= [] X = E,T |= X and T |= [] X .
eq E |= <> X = E |= X .
eq E,T |= <> X = E,T |= X or T |= <> X .
eq E |= X U Y = E |= Y .
eq E,T |= X U Y = E,T |= Y or E,T |= X and T |= X U Y .
eq E |= o X = E |= X .
eq E,T |= o X = T |= X .

endfm

Notice that only the temporal operators needed declarations and semantics, the others being already defined
in PROP-CALCandLOGICS-BASIC, and that the definitions that involved the functionsheadandtail were
replaced by two alternative equations.

One can now directly verify LTL properties on finite traces using Maude’s rewriting engine. Consider
as an example a traffic light that switches between the colorsgreen, yellow, andred. The LTL property that
after greencomesyellow, and its negation, can now be verified on a finite trace using Maude’s rewriting
engine, by typing commands to Maude such as (assuming that states can be repeated, making use of the
next-operator undesirable):

reduce green, yellow, red, green, yellow, red, green, yellow, red, red
|= [](green -> !red U yellow) .

reduce green, yellow, red, green, yellow, red, green, yellow, red, red
|= !([](green -> !red U yellow)) .

which should return the expected answers, i.e.,true and false , respectively. The algorithm above does
nothing but blindly follows the mathematical definition of satisfaction and even runs reasonably fast for
relatively small traces. For example, it takes5 about 30ms (74k rewrite steps) to reduce the first formula
above and less than 1s (254k rewrite steps) to reduce the second on traces of 100 events (10 times larger
than the above). Unfortunately, this algorithm doesn’t seem to be tractable for large event traces, even if
run on very fast platforms. As a concrete practical example, it took Maude 7.3 million rewriting steps (3
seconds) to reduce the first formula above and 2.4 billion steps (1000 seconds) for the second on traces of
1,000 events; it couldn’t finish in one night (more than 10 hours) the reduction of the second formula on a
trace of 10,000 events. Since the event traces generated by an executing program can easily be larger than
10,000 events, the trivial algorithm above can not be used in practice.

A rigorous complexity analysis of the algorithm above is hard (because it has to take into consideration
the evaluation strategy used by Maude for terms of sortBool) and not worth the effort. However, a simplified
analysis can be easily made if one only counts the maximum number of atoms of the formevent |= atom

that can occur during the rewriting of a satisfaction term, as if all the boolean reductions were applied after
all the other reductions: let us consider a formulaX = []([](...([]A)...)) where the always operator
is nestedm times, and a traceT of sizen, and letT (n,m) be the total number of basic satisfactionsevent

|= atom that occur in the normal form of the termT |= X if no boolean reductions were applied. Then,
the recurrence formulaT (n,m) = T (n− 1,m) + T (n,m− 1) follows immediately from the specification

5On a 1.7GHz, 1Gb memory PC.

8

above. Since(m
n) = (m

n−1) + (m−1
n−1), it follows thatT (n,m) > (m

n), that is,T (n,m) = Θ(nm), which is of
course unacceptable.

3.3 Traversing the Execution Trace Backwards

The satisfaction relation above for finite trace LTL can therefore be defined recursively, both on the structure
of the formulae and on the size of the execution trace. As is often the case for functions defined this way, an
efficient dynamic programming algorithm can be generated from any LTL formula. We only show such an
algorithm for a particular formula, referring the interested reader to [28] which shows how these algorithms
can be generated in linear time and space. The formula we choose below is artificial (and will not be used
later in the paper), but contains all four temporal operators.

Let 2((p U q) → 3(q → ◦r)) be an LTL formula and letϕ1, ϕ2, ..., ϕ10 be its subformulae, in
breadth-first order:

ϕ1 = 2((p U q) → 3(q → ◦r)),
ϕ2 = (p U q) → 3(q → ◦r),
ϕ3 = p U q,
ϕ4 = 3(q → ◦r),
ϕ5 = p,
ϕ6 = q,
ϕ7 = q → ◦r,
ϕ8 = q,
ϕ9 = ◦r,
ϕ10 = r.

Let alsonow[1..10]andnext[1..10]be two arrays of bits (or boolean values); their length is exactly the size
of the LTL formulaϕ. Then the following algorithm can be generated in linear time. This algorithm will
take as input an execution tracet and returns 0 or 1, saying whether the formulaϕ was or not violated by
the tracet.

INPUT: tracet = e1e2...en

next[10] ← (r ∈ en);
next[9] ← next[10];
next[8] ← (q ∈ en);
next[7] ← next[8] implies next[9];
next[6] ← (q ∈ en);
next[5] ← (p ∈ en);
next[4] ← next[7];
next[3] ← next[6];
next[2] ← next[3] implies next[4];
next[1] ← next[2];
for i = n− 1 downto 1 do {

now[10] ← (r ∈ ei);
now[9] ← next[10];
now[8] ← (q ∈ ei);

9

now[7] ← now[8] implies now[9];
now[6] ← (q ∈ ei);
now[5] ← (p ∈ ei);
now[4] ← now[7] or next[4];
now[3] ← now[6] or (now[5] and next[3]);
now[2] ← now[3] implies now[4];
now[1] ← now[2] and next[1];
next← now}

output(next[1]);

The algorithm above can be further optimized, noticing that only the bits 10, 4, 3 and 1 are needed in the
vectorsnowandnext, as we did for past time LTL in [17]. The analysis of this algorithm is straightforward.
Its time complexity isΘ(n ·m) while the memory required is2 ·m bits, wheren is the length of the trace
andm is the size of the LTL formula.

The dynamic programming technique presented in this subsection is as efficient as one can hope, but,
unfortunately, has a major drawback: it needs to traverse the execution trace backwards. From a practical
perspective, that means that the instrumented program is run for some period of time while its execution trace
is saved, and then, after the program was stopped, its execution trace is traversed backwards and (efficiently)
analyzed. Besides the obvious inconvenience due to storing potentially huge execution traces, this method
cannot be used to monitor programs online in practice, synchronously, that is, to issue a warningexactlyat
the time when the event violating the formula was observed.

4 An Efficient Rewriting Algorithm

In this section we shall present a more efficient rewriting semantics for LTL, based on the idea of consuming
the events in the trace, one by one, and updating a data structure (which is also a formula) corresponding
to the effect of the event on the value of the formula. An important advantage of this algorithm is that it
often detects when a formula is violated or validated before the end of the execution trace, so, unlike the
algorithms above, it is suitable for online monitoring. Our decision to write an operational semantics this
way was motivated by an attempt to program such an algorithm in Java, where such a solution would be
natural. The presented rewriting-based algorithm is linear in the size of the execution trace and worst-case
exponential in the size of the monitored LTL formula.

4.1 The Main Algorithm

We implement this algorithm by extending the definition of the operation_{_} : Formula Event* -> Formula

to temporal operators, with the following intuition. Assuming a traceE,T consisting of an eventE followed
by a traceT, then a formulaX holds on this trace if and only ifX{E} holds on the remaining traceT. If the
eventE is terminal thenX{E *} holds if and only ifX holds under standard LTL semantics on the infinite
trace containing only the eventE.

fmod LTL-REVISED is protecting LTL .
vars X Y : Formula .
var E : Event . var T : Trace .
eq ([] X){E} = [] X /\ X{E} .
eq ([] X){E *} = X{E *} .

10

eq (<> X){E} = <> X \/ X{E} .
eq (<> X){E *} = X{E *} .
eq (o X){E} = X .
eq (o X){E *} = X{E *} .
eq (X U Y){E} = Y{E} \/ X{E} /\ X U Y .
eq (X U Y){E *} = Y{E *} .

op _|-_ : Trace Formula -> Bool [strat (2 0)] .
eq E |- X = [X{E *}] .
eq E,T |- X = T |- X{E} .

endfm

The rule for the temporal operator[]X should be read as follows: the formulaX must hold now (X{E}) and
also in the future ([]X). The sub-expressionX{E} represents the formula that must hold for the rest of the
trace forX to hold now. As an example, consider the formula[]<>A . This formula modified by an event
B C (so A doesn’t hold) yields the rewriting sequence([]<>A) {B C} → []<>A /\ (<>A) {B C} →
[]<>A /\ (<>A \/ A {B C}) → []<>A /\ (<>A \/ false) → []<>A /\ <>A , while the same
formula transformed byA C (soA holds) yields([]<>A) {A C} → []<>A /\ (<>A) {A C} → []<>A

/\ (<>A \/ A {A C}) → []<>A /\ (<>A \/ true) → []<>A /\ true → []<>A , i.e., the same
formula. Note that these rules spell out the semantics of each temporal operator. An alternative solution
would be to define some operators in terms of others, as is typically the case in the standard semantics for
LTL. For example, we could introduce an equation of the form:<>X = true U X , and then eliminate the
rewriting rule for<>X in the above module. This turns out to be less efficient because more rewrites are
needed.

This module eventually defines a new satisfaction relation_|-_ between traces and formulae. The term
T |- X is evaluated now by an iterative traversal over the trace, where each event transforms the formula.
Note that the new formula that is generated in each step is always kept small by being reduced to normal
form via the equations in thePROP-CALCmodule in Subsection 2.2. In fact, the new formula consists of
boolean combinations of sub-formulae of the initial formula, kept in a minimal canonical form. Therefore,
the algorithm is linear in the size of the trace, and worst-case exponential in the size of the formula. However,
it seems that this exponential complexity in the size of the formula is more of theoretical importance than
practical, since in general the size of the formula grew only twice or less in our experiments.

Verification results are very encouraging and show that this optimized semantics is orders of magnitudes
faster than the first semantics. Traces of less than 10,000 events are verified in milliseconds, while traces of
100,000 events never needed more than 3 seconds. This technique scales quite well; we were able to monitor
even traces of hundreds of millions events. As a concrete example, we created an artificial trace by repeating
10 million times the 10 event trace in Subsection 3.2, and then checked it against the formula[](green

-> !red U yellow) . There were needed 4.9 billion rewriting steps for a total of about 1,500 seconds. In
Subsection 4.3 we will see how this algorithm can be made even more efficient, using memoization.

4.2 Correctness and Completeness

In this subsection we prove that the algorithm presented above is correct and complete with respect to the
semantics of finite trace LTL presented in Section 3. The proof is done completely in Maude, but since
Maude is not intended to be a theorem prover, we actually have to generate the proof obligations by hand.
However, the proof obligations below could be automatically generated by a proof assistant likeKUMO [8]

11

or a theorem prover like PVS [29]6.

Theorem: For any traceT and any formulaX, T |= X if and only if T |- X .

Proof: By induction, both on traces and formulae. We first need to prove two lemmas, namely that the
following two equations hold in the context of bothLTL andLTL-REVISED :

(∀ E : Event, X : Formula) E |= X = E |- X ,

(∀ E : Event, T : Trace, X : Formula) E T |= X = T |= X{E} .

We prove them by structural induction on the formulaX. Constantse andx are needed in order to prove
the first lemma via the theorem of constants. However, since we prove the second lemma by structural
induction onX, we not only have to add two constantse andt for the universally quantified variablesE and
T, but also two other constantsy andz standing for formulas which can be combined via operators to give
other formulas. The induction hypothesis for the second lemma is added to the following specification as
equations. Notice that we merged the two proofs to save space. A proof assistant likeKUMO or PVS would
prove them independently, generating only the needed constants for each of them.

fmod PROOF-OF-LEMMAS is
extending LTL .
extending LTL-REVISED .
op e : -> Event . op t : -> Trace .
ops a b c : -> Atom . ops y z : -> Formula .
eq e |= y = e |- y .
eq e |= z = e |- z .
eq e,t |= y = t |= y{e} .
eq e,t |= z = t |= z{e} .
eq b{e} = true .
eq c{e} = false .

endfm

It is worth reminding the reader at this stage that the functional modules in Maude have initial semantics,
so proofs by induction are valid. Before proceeding further, the reader should be aware of the operational
semantics of the operation_==_ , namely that the two argument terms are first reduced to their normal forms
which are then compared syntactically (but modulo associativity and commutativity); it returnstrue if and
only if the two normal forms are equal. Therefore, the answertrue means that the two terms are indeed
semantically equal, whilefalse only means that they couldn’t be proved equal; they can still be equal.

red (e |= a == e |- a)
and (e |= true == e |- true)
and (e |= false == e |- false)
and (e |= y /\ z == e |- y /\ z)
and (e |= y ++ z == e |- y ++ z)
and (e |= [] y == e |- [] y)
and (e |= <> y == e |- <> y)
and (e |= y U z == e |- y U z)
and (e |= o y == e |- o y)

and (e,t |= true == t |= true{e})
and (e,t |= false == t |= false{e})
and (e,t |= b == t |= b{e})
and (e,t |= c == t |= c{e})
and (e,t |= y /\ z == t |= (y /\ z){e})
and (e,t |= y ++ z == t |= (y ++ z){e})
and (e,t |= [] y == t |= ([] y){e})
and (e,t |= <> y == t |= (<> y){e})
and (e,t |= y U z == t |= (y U z){e})
and (e,t |= o y == t |= (o y){e}) .

6We’ve already done it in PVS, but we prefer to use only Maude in this paper.

12

It took Maude 129 reductions to prove these lemmas. Therefore, one can safely add now these lemmas as
follows:

fmod LEMMAS is
protecting LTL .
protecting LTL-REVISED .
var E : Event .
var T : Trace . var X : Formula .
eq E |= X = E |- X .
eq E,T |= X = T |= X{E} .

endfm

We can now prove the theorem, by induction on traces. More precisely, we show:

P(E), and
P(T) impliesP(E,T), for all eventsE and tracesT,

whereP(T) is the predicate “for all formulasX, T |= X iff T |- X ”. This induction schema can be easily
formalized in Maude as follows:

fmod PROOF-OF-THEOREM is protecting LEMMAS .
op e : -> Event .
op t : -> Trace . op x : -> Formula .
var X : Formula .
eq t |= X = t |- X .

endfm

red e |= x == e |- x .
red e,t |= x == e,t |- x .

Notice the difference in role between the constantx and the variableX. The first reduction proves the base
case of the induction, using the theorem of constants for the universally quantified variableX. In order to
prove the induction step, we first applied the theorem of constants for the universally quantified variables
E andT, then addedP(t) to the hypothesis (the equation “eq t |= X = t |- X . ”), and then reduced
P(e t) using again the theorem of constants for the universally quantified variableX. Like in the proofs of
the lemmas, we merged the two proofs to save space.

4.3 Further Optimization by Memoization

Even though the formula transforming algorithm in Subsection 4.1 can process 100 million events in about
25 minutes, which is relatively reasonable for practical purposes, it can be significantly improved by adding
only 5 more characters to the existing Maude code presented so far. More precisely, one can replace the
operation declaration

op _{_} : Formula Event* -> Formula [prec 10]

in moduleLOGICS-BASIC by the operation declaration

op _{_} : Formula Event* -> Formula [memo prec 10]

The attributememoadded to an operation declaration instructs Maude to memorize, or cache, the normal
forms of terms rooted in that operation, i.e., those terms will be rewritten only once. Memoization is im-
plemented by hashing, where the entry in the hash table is given by the term to be reduced and the value
in the hash is its normal form. In our concrete example, memoization has the effect that any LTL formula
will be transformed by a given event exactly once during the monitoring sequence; if the same formula and

13

the same event occur in the future, the resulting modified formula is extracted from the hash table without
applying any rewriting step. If one thinks of LTL in terms of automata, then our new algorithm corresponds
to building the monitoring automatonon the fly. The obvious benefit of this technique is that only theneeded
part of the automaton is built, namely that part that is reachable during monitoring a particular sequence of
events, which is practically very useful because the entire automaton associated to an LTL formula can be
exponential in size, so storing it might become a problem.

The use of memoization brings a significant improvement in the case of LTL. For example, the same
sequence of 100 million events, which took 1500 seconds using the algorithm presented in Subsection 4.1,
takes only 185 seconds when one uses memoization, for a total of 2.2 rewritings per processed event and
540,000 events processed per second! We find this numbers amazingly good for any practical purpose we
can think of and believe that, taking into account the simplicity, obvious correctness and elegance of the
rewriting based algorithm (implemented basically by 8 rewriting rules inLTL-REVISED), it would be hard
to argue for any other implementation of LTL monitoring. One should, however, be careful when one uses
memoization because hashing slows down the rewriting engine. LTL is a happy case where memoization
brings a significant improvement, but there might be monitoring logics where memoization could be less
efficient. Experimentation is certainly needed if one designs a new logic for monitoring and wants to use
memoization.

4.4 Synchronous versus Asynchronous Monitoring

There are many safety critical applications in which one would want to report a violation of a requirement
as soon as possible, and to not allow the monitored program take any further action once a requirement
is violated. We call this desired functionalitysynchronous monitoring. Otherwise, if a violation can only
be detected after the monitored program is stopped and its entire execution trace is needed to perform the
analysis, then we call itasynchronous monitoring. Notice that the dynamic programming algorithm in [28]
(see also Subsection 3.3) isnot synchronous, because one can detect a violation only after a program is
stopped and its execution trace is available for backwards traversal.

The algorithm presented in this section is also asynchronous because there are universally false formulae
which are detected so only at the end of execution trace. Consider, for example, that one monitors the finite
trace LTL formula!<>([]A \/ []!A) , which is false because at the end of any execution traceA either
holds or not. However, in order for a monitor to detect such violation, it should implement a validity checker
for finite trace LTL, such as the one in Subsection 5.2, and call it on the current formula after each event
is processed. Checking validity of a finite trace LTL formula is very expensive (we are not aware of any
theoretical result stating its exact complexity, but we believe that it is PSACE-complete, like for standard
infinte trace LTL). We are currently considering providing a fully synchronous LTL monitoring module
within JPAX, at the expense of calling a validity checker after each event, and let the user of the system
choose either synchronous or asynchronous monitoring.

There are, however, many practical LTL formulae for which violation can be detected synchronously
by the presented formula trasnforming rewriting-based algorithm presented in this section. Consider for
example the sample formula of this paper,[](green -> !red U yellow) , which is violated if and only
if a red event is observed after a green one. The monitoring requirement of our algorithm, which initially
is the formula itself, will not be changed unless a green event is received, in which case it will change
to (!red U yellow) \/ [](green -> !red U yellow) . A yellow event will turn it back into the
initial formula, a green event will keep it unchanged, but a red event will turn it intofalse . If this is the
case, then the monitor declares the formula violated and appropriate actions can be taken. Notice that the
violation was detectedexactlywhen it occured, and in general, that this formula can be monitored by our

14

algorithm synchronously. A very interesting, practical and challanging problem is to find criteria that say
when a formula can be synchronously monitored without the use of a validity checker.

5 Generating Efficient Monitors

Even though the rewriting based monitoring algorithm presented in the previous section performs quite well
in practice, there can be situations in which one wants to minimize the monitoring overhead as much as
possible. Additionally, despite its simplicity and elegance, the procedure above requires an efficient AC
rewriting engine which may not be available or may not be desirable on some monitoring platforms, such
as, for example, within an embedded system. In this section we present an algorithm built on the ideas in
the previous section, also based on rewriting, which takes as input an LTL formula and generates a special
finite state machine (FSM), calledbinary transition tree finite state machine (BTT-FSM), that can be then
used as an efficient monitor. An example of a BTT-FSM for the traffic light control requirements formula
[](green -> !red U yellow) discussed previously in the paper can be seen in Figure 2 (see Figure 3
for a more formal representation). One should think of transitions using BTTs as naturally as possible; for

State BTT for non-terminal events BTT for terminal events

1

y n
green

y n
yellow

y n
red

1

1

2false

y n
green

y n
yellow

true

truefalse

2

y n
yellow

1

2

y n
red

false

y n
yellow

true false

Figure 2: A BTT-FSM for the formula[](green -> !red U yellow)

example, if the BTT-FSM in Figure 2 is in state 1 and a non-terminal event is received, then: first evaluate the
predicateyellow ; if true then stay in state 1 else evaluategreen ; if false then stay in state 1 else evaluate
red ; if true then report “formula violated” else move to state 2. These FSMs can be either stored as data
structures or generated as source code (case statements) which are further compiled into actual monitors.
Our FSMs can be exponential in the number of states (as function of the size of the initial LTL formula)
but they only need to evaluateat mostall the atomic state predicates in order to proceed to the next state
when a new event is received, so the runtime overhead is actually linear at worst. The size of our FSMs
can become a problem when storage is a scarce resource, so we pay special attention to generatingoptimal

15

FSMs. Interestingly, the number of state predicates to be evaluated tends to decrease with the number of
states, so the overall monitoring overhead is also reduced. The drawback of generating an optimal BTT-FSM
statically, i.e., before monitoring, is the exponential time/space required at startup (compilation). Therefore,
we recommend the algorithm below in situations where the LTL formulae to monitor are relatively small in
size but the runtime overhead is desired to be minimal.

5.1 The Main Algorithm

Informally, our algorithm to generate minimal FSMs from LTL formulae uses the rewriting based algorithm
presented in the previous section statically on all possible events, until the set of formulae to which the initial
LTL formula can “evolve” stabilizes. More precisely, it builds a FSM whose states are formulae and whose
transitions are the “events”; events are regarded here as boolean formulae describing the next (abstract) state
of the monitored program in terms of the atomic predicates, i.e., formulae of the forma1 ∧ ... ∧ ak1 ∧
¬ak1+1 ∧ ... ∧ ¬ak wherea1, ..., ak are all the atomic state predicates occurring in the LTL formula; we let
s1, ..., s2k denote all these state boolean formulae in no particular order. Since the size of any formula into
which an LTL formula may evolve during an execution sequence is bounded (exponentially in the size of
the initial formula; see the previous section), it follows that this algorithm will eventually terminate.

We use the notationϕ[p1?ϕ1, ..., pj?ϕj] to state that the formula (or state in the FSM)ϕ changes to
ϕi when an event satisfying the boolean formulapi is received, for eachi between 1 and somej smaller
than or equal to2k. For a given newly generated formula/stateϕ, we generate the next potential formulae
ϕ1, ..., ϕ2k by generating and analyzingϕ[s1?ϕ1, ..., s2k?ϕ2k], whereϕi is the formulaϕ{si} obtained from
ϕ after consuming the eventsi as described in the previous section, for eachi ∈ {1, ..., 2k}. To keep the
number of states minimal, we rewriteϕ[..., pi1?ϕi1 , ..., pi2?ϕi2 , ...] to ϕ[..., (pi1 ∨ pi2)?ϕi1 , ...] whenever
ϕi1 andϕi2 areequivalentformulae under finite trace LTL semantics. In order to check this semantical
equivalence we have implemented a validity checker that we call on the formulaϕi1 ↔ ϕi2 . Once the term
ϕ[p1?ϕ1, ..., pj?ϕj] cannot be further simplified using the validity checker, the process of generating new
formulae/states is iterated sequentially for the formulaeϕ1, ..., ϕj . This procedure will terminate. Notice
that each formula/state and its transitions thus generated, sayϕ[p1?ϕ1, ..., pj?ϕj], has the property that
exactlyone ofp1, ..., pj is true for any newly received event, thatat mostone ofϕ1, ..., ϕj can beϕ, true or
false, and that ifϕ is trueor falsethenj = 1, p1 = trueandϕ1 = ϕ.

Obviously, this algorithm is exponential in the size of the initial LTL formula, so one should not expect
it to terminate in reasonable time on large formulae. Once it terminates, the termsϕ[...] contain all those
formulaeϕ to which the initial LTL formula can evolve during any monitoring session. What is left to
do now is to say what happens when a monitoring session is terminated; according to our semantics for
finite trace LTL described in Section 3, we assume that the last event is repeated infinitely. To faithfully
implement this semantics, we extend the notationϕ[...] to ϕ[...][s1?ϕ′1, ..., s2k?ϕ′

2k], whereϕ′i is the truth
valueϕ{si ?} obtained fromϕ considering that the eventsi is the last monitored event, as described in the
previous section, for eachi ∈ {1, ..., 2k}. Then the same simplification technique as in the first step of the
algorithm is used, reducing these terms to terms of the formϕ[...][pt?true, pf?false]. Note that this second
step takes much less than the previous step because validity is checked only for trivial formulae, and that
exactlyone of the boolean formulaept, pf holds for any event claimed to be the last; sincepf = ¬pt, we
ignorepf in what follows.

The two steps above therefore generate a special FSM encoded via termsϕ[p1?ϕ1, ..., pj?ϕj][pt?true].
At monitoring time, this FSM is used as follows: if it is in stateϕ and a non-terminal event is received that
makespi true (for1 ≤ i ≤ j) then the FSM moves into stateϕi; if a terminal event is received then either
true or falseis output, depending on whetherpt or pf holds, respectively. Notice that the transitions for the

16

nodestrue and/orfalsearetrue[true?true][true?true] andfalse[true?false][true?false], respectively, so once
the FSM gets into atrue or falsestate it will remain there forever and it will return the appropriate output
when the monitoring is stopped (one can slightly improve our algorithm by removing thetrue/falsestates
and giving appropriate messagesbeforeentering them). The main computational component atruntimeof
our algorithm is therefore to evaluate the state formulaep1, ..., pj which are boolean combinations of the
atomic state propositionsa1, ..., ak occurring in the monitored LTL formula. Since some of these atomic
propositions can be expensive to evaluate (for example one can question if an array is sorted), one would
like to also minimize the amount of work needed to decide to which ofϕ1, ..., ϕj to go fromϕ. To achieve
this, we have also implemented a method that takes ageneralized transitionp1?ϕ1, ..., pj?ϕj and generates
a binary transition tree (BTT), that is, a binary tree whose nodes are atomic predicates and whose leaves
are formulae/states (Figure 2 shows some BTTs in flowchart notation). BTTs encode the transitions in our
FSMs, reason for which we call our FSMsbinary transition tree finite state machines (BTT-FSMs). We
actually generateoptimalBTTs, where our optimality criterion at this stage is the size of the BTT.

Once the steps above terminate, the formulaeϕ, ϕ1, etc., are not needed anymore, so we replace them by
unique labels in order to reduce the amount of storage needed to encode the BTT-FSM. This algorithm can
be relatively easily implemented in any programming language. We have, however, found Maude again a
very elegant system, implementing this whole algorithm in about 200 lines of Maude code. We next describe
our implementation in more detail.

5.2 The Validity Checker

Our implementation for the validity checker is simple and exponential. It follows closely the implementa-
tion of the main algorithm described in the previous subsection, except, of course, the minimization step
that uses the validity checker; a boolean validity checker is used instead to keep the number of gener-
ated formulae small. For a given LTL formula, we therefore obtain a FSM also given by terms of the
form ϕ[p1?ϕ1, ..., pj?ϕj][pt?true]; this FSM will almost certainly have more states than the minimal BTT-
FSM described above, but it can be generated faster (because the expensive validity checks for formulae
ϕi1 ↔ ϕi2 are not needed anymore). Then we just check that for any state in this FSM it is the case that
pt = true. The intuition for this check is that a formula is valid under finite trace LTL semantics if and
only if any (finite) monitoring sequence satisfies that formula; since any generated formula/state in the FSM
corresponds to a valid formula to which the initial formula can evolve, we need to make sure that each of
these formulae becometrueunder any possible last monitored event.

5.3 A Minimal FSM

As mentioned earlier, minimality of the monitor is not crucial for obtaining a small runtime overhead, in the
same way in which a smaller program is not necessarily faster than a larger program. However, it seems to
be an interdependence between the size of a FSM monitor and the size of the BTTs associated to its states,
namely the smaller the FSM in number of states the smaller the BTTs, so the lower the monitoring overhead.
A rigorous proof of this interdependence seems to be hard; we only show that our FSMs are minimal with
respect to the number of states.

Theorem: The special FSM presented in this section has minimal number of states in the class of deter-
ministic (total) FSMs in which transitions are activated by any boolean combination of atomic state predi-
cates.

Proof: It follows by standard results in the theory of deterministic finite state automata (DFA), noticing

17

that our rewriting decision procedure for propositional calculus gives a canonical form for any transition
(i.e., boolean formula) and that the usual language equivalence in DFA’s becomes trace equivalence in our
special FSMs, which is nothing but semantical equivalence of formulae in our finite trace LTL setting. The
rest follows by the fact thatϕ andψ are semantically equivalent if and only ifϕ ↔ ψ is valid.

5.4 Binary Transition Trees

In order to keep the runtime overhead of our FSMs minimal, it is crucial to do as little computation as
possible in order to proceed to the next state. When in a stateϕ[p1?ϕ1, ..., pj?ϕj][...], a naive implementation
would start to sequentially evaluatep1, ...,pj on the new event until a first one, saypi, holds and then move
to stateϕi. Fortunately, one can do much better by making use of what we callbinary transition trees
(BTTs), which are binary trees associated to each state of a FSM having atomic propositions as nodes and
states in the FSM as leaves. We use the notation〈condition〉 ? 〈BTT〉 : 〈BTT〉 borrowed from C and Java
to denote BTTs. For example, the BTTa1 ? a2 ? 1 : a3 ? 2 : 1 : a3 ? 3 : 2 says “evala1; if a1 then (eval
a2; if a2 then go to state1 else (evala3; if a3 then go to state2 else go to state1)) else (evala3; if a3 then
go to state3 else go to state2”. When the transitions of a FSM are all encoded as BTTs (one associated to
each state), then we call it abinary transition tree finite state machine (BTT-FSM). Notice that, in the worst
possible case, one just has to evaluate all the atomic predicates in order to proceed to the next state of a
BTT-FSM. We have implemented a procedure that takes a generalized transition and returns a BTT. More
BTTs can encode the same generalized transition, so one needs to develop some criteria to select the better
ones. A most natural criterion would be to minimize the average amount of computation. For example, if
all atomic predicates are equally probable to hold and if an atomic predicate is very expensive to evaluate,
then one would select that BTT that places that predicate as deeply as possible, so its evaluation is delayed
as much as possible. Based on the above, we believe that the following is an important theoretical problem
in runtime monitoring:

Problem: Optimal BTT

Input: A set of atomic predicatesa1, ..., ak that hold with probabilitiesπ1, ..., πk and have
costsc1, ..., ck, respectively, and a generalized transitionp1?ϕ1, ..., pj?ϕj wherep1, ..., pj are
boolean formulae overa1, ..., ak.

Output: A BTT encoding the generalized transition that probabilistically minimizes the amount
of computation to decide the next state.

We do not know how to solve this interesting problem yet, but we conjecture the following result that
we currently use in our implementation:

Conjecture: If π1 = ... = πk andc1 = ... = ck then the solution to the problem above is the BTT of
minimal size.

Our current generalized transition to BTT algorithm is exponential in the number of atomic predicates;
it simply enumerates all possible BTTs recursively and then selects the minimal one (in size). Generating
the BTTs takes significantly less then generating the FSM, so we do not regard it as a problem yet.

5.5 Evaluation

The algorithm presented in this section, despite its overall startup exponential time, can be very useful when
formulae are relatively short. For the traffic light controller requirement formula discussed in the paper,

18

[](green -> (!red) U yellow) , the algorithm presented in this section generates in about 0.2 seconds
the optimal BTT-FSM in Figure 3 (also shown in Figure 2 in flowchart notation):

State Non-terminal event Terminal event
1 yellow ? 1 : green ? red ? false: 2 : 1 yellow ? true : green ? false: true
2 yellow ? 1 : red ? false: 2 yellow ? true : false

Figure 3: An optimal BTT-FSM for the formula[](green -> !red U yellow)

For simplicity, the statestrueandfalsedo not appear in the table above. Notice that the atomic predicate
red doesnot need to be evaluated on terminal events and thatgreen does not need to be evaluated in state
2. In this example, the colors are not supposed to exclude each other, that is, the traffic controller can
potentially be both green and red.

The LTL formulae on which our algorithm has the worst performance are those containing many nested
temporal operators (which are not frequently used in specifications anyway, because of the high risk of
getting them wrong). For example, it takes our algorithm 2.5 seconds to generate the minimal 3-state
(true andfalsestates are not counted) BTT-FSM for the formulaa U (b U (c U d)) and 25.8 seconds to
generate the 7-state minimal BTT-FSM for the formula((a U b) U c) U d . The generated BTT-FSMs are
monitored most efficiently on RAM machines, due to the fact that case statements are usually implemented
via jumps in memory. Monitoring BTT-FSMs using rewriting does not seem appropriate because it would
require linear time (as a function of the number of states) to extract the BTT associated to a state in a BTT-
FSM. An interesting experiment would be use memoization to avoid multiple searches for the same BTT.
However, we believe that the algorithm presented in Section 4 is satisfactory in practice if one is willing to
use a rewriting engine for monitoring.

6 Conclusions

We presented a finite trace semantics of LTL in the Maude logic together with a much more efficient version
based on formula transforming state changes. We then went a step further and improved the efficient version
by hashing rewriting results, thereby reducing the number of rewritings performed during trace analysis.
The hashing corresponds to building an observer automaton on-the-fly, having the advantage that only the
part of the automaton that is needed for analyzing a given trace is generated. The resulting algorithm is
very efficient. However, in certain cases one would want to generate an observer finite state machine (or
automaton) apriori, for example if a rewriting system cannot be used for monitoring, or if minimal runtime
overhead is needed by any means. For this case, we presented an algorithm for generating minimal automata
from LTL formulae.

All algorithms are written in surprisingly few lines of Maude code, illustrating the strength of rewriting
for this particular domain. In spite of the reduced size of the code, the implementations seem to be efficient
for practical purposes. As a consequence, we have demonstrated how rewriting can be used not only to
experiment with runtime monitoring logics, but also as an implementation language. As an example of
future work, that we anticipate to be very easy, is the extension of LTL with real-time constraints. Since
Maude by itself provides a high-level specification language, one can argue that Maude in its entirety can be
used for writing requirements. Further work will show whether this avenue is fruitful.

19

References

[1] M. Clavel, F. J. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and Programming in Rewriting Logic, Mar. 1999. Maude System documentation at
http://maude.csl.sri.com/papers .

[2] S. Cohen. Jtrek. Compaq,
http://www.compaq.com/java/download/jtrek .

[3] J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera : Extracting
Finite-state Models from Java Source Code. InProceedings of the 22nd International Conference on Software
Engineering, Limerich, Ireland, June 2000. ACM Press.

[4] C. Demartini, R. Iosif, and R. Sisto. A Deadlock Detection Tool for Concurrent Java Programs.Software
Practice and Experience, 29(7):577–603, July 1999.

[5] D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and W. Visser, editors,SPIN
Model Checking and Software Verification, volume 1885 ofLecture Notes in Computer Science, pages 323–330.
Springer, 2000.

[6] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties on Running Pro-
grams. InProceedings, International Conference on Automated Software Engineering (ASE’01), pages 412–416.
Institute of Electrical and Electronics Engineers, 2001. Coronado Island, California.

[7] P. Godefroid. Model Checking for Programming Languages using VeriSoft. InProceedings of the 24th ACM
Symposium on Principles of Programming Languages, pages 174–186, Paris, France, Jan. 1997.

[8] J. Goguen, K. Lin, G. Roşu, A. Mori, and B. Warinschi. An Overview of the Tatami Project. In K. Futatsugi,
T. Tamai, and A. Nakagawa, editors,Cafe: An Industrial-Strength Algebraic Formal Method. Elsevier, to appear,
2000.

[9] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ. In J. Goguen and
G. Malcolm, editors,Software Engineering with OBJ: Algebraic Specification in Action. Kluwer, 2000.

[10] K. Havelund, S. Johnson, and G. Roşu. Specification and Error Pattern Based Program Monitoring. InPro-
ceedings of the European Space Agency workshop on On-Board Autonomy, Noordwijk, The Netherlands, Oct.
2001.

[11] K. Havelund, M. R. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using SPIN.IEEE Trans-
actions on Software Engineering, 27(8):749–765, Aug. 2001. An earlier version occurred in the Proceedings of
the 4th SPIN workshop, 1998, Paris, France.

[12] K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.International Journal
on Software Tools for Technology Transfer, 2(4):366–381, Apr. 2000. Special issue of STTT containing selected
submissions to the 4th SPIN workshop, Paris, France, 1998.

[13] K. Havelund and G. Roşu. Java PathExplorer – A Runtime Verification Tool. InProceedings of the 6th In-
ternational Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS’01), Montreal,
Canada, June 2001.

[14] K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In K. Havelund and G. Roşu, edi-
tors,Proceedings of the First International Workshop on Runtime Verification (RV’01), volume 55 ofElectronic
Notes in Theoretical Computer Science, pages 97–114, Paris, France, July 2001. Elsevier Science.

[15] K. Havelund and G. Roşu. Monitoring Programs using Rewriting. InProceedings, International Conference
on Automated Software Engineering (ASE’01), pages 135–143. Institute of Electrical and Electronics Engineers,
2001. Coronado Island, California.

[16] K. Havelund and G. Roşu. Testing linear temporal logic formulae on finite execution traces. Technical Report
TR 01-08, RIACS, May 2001. Written 20 December 2000.

[17] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. InTools and Algorithms for Construction
and Analysis of Systems (TACAS’02), volume 2280 ofLecture Notes in Computer Science, pages 342–356.
Springer, 2002. EASST best paper award at ETAPS’02.

[18] K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Checking for Protocol Verification. In
M. C. Gaudel and J. Woodcock, editors,FME’96: Industrial Benefit and Advances in Formal Methods, volume
1051 ofLecture Notes in Computer Science, pages 662–681. Springer, 1996.

20

[19] G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven Software. InProceedings
of ICSE’99, International Conference on Software Engineering, Los Angeles, California, USA, May 1999.
IEEE/ACM.

[20] J. Hsiang.Refutational Theorem Proving using Term Rewriting Systems. PhD thesis, University of Illinois at
Champaign-Urbana, 1981.

[21] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based on Formal Specifi-
cations. InProceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications, 1999.

[22] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.Theoretical Computer Science,
pages 73–155, 1992.

[23] J. Meseguer. Membership Algebra as a Logical Framework for Equational Specification. InProceedings,
WADT’97, volume 1376 ofLecture Notes in Computer Science, pages 18–61. Springer, 1998.

[24] T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles for Critical Systems. InIn
Proceedings of the California Software Symposium, 1996.

[25] D. Y. Park, U. Stern, and D. L. Dill. Java Model Checking. InProceedings of the First International Workshop
on Automated Program Analysis, Testing and Verification, Limerick, Ireland, June 2000.

[26] A. Pnueli. The Temporal Logic of Programs. InProceedings of the 18th IEEE Symposium on Foundations of
Computer Science, pages 46–77, 1977.

[27] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles for Reactive Systems. In
Proceedings of the Fourteenth International Conference on Software Engineering, Melbourne, Australia, pages
105–118, 1992.

[28] G. Roşu and K. Havelund. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic For-
mulae. RIACS Technical report,http://ase.arc.nasa.gov/pax , January 2001.

[29] N. Shankar, S. Owre, and J. M. Rushby.PVS Tutorial. Computer Science Laboratory, SRI International, Menlo
Park, CA, Feb. 1993. Also appears in Tutorial Notes,Formal Methods Europe ’93: Industrial-Strength Formal
Methods, pages 357–406, Odense, Denmark, April 1993.

[30] S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In K. Havelund, J. Penix, and
W. Visser, editors,SPIN Model Checking and Software Verification, volume 1885 ofLecture Notes in Com-
puter Science, pages 224–244. Springer, 2000.

[31] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. InProceedings of ASE’2000: The
15th IEEE International Conference on Automated Software Engineering. IEEE CS Press, Sept. 2000.

21

